欢迎访问一起彩官方新版本下载 网站!
苏州总公司:
手机:+86-18136197085
电话:+86-512-36638987
传真:+86-512-36638997
邮箱:smkafm@163.com
地址:江苏省苏州市昆山市张浦镇滨江北路422号
通过焊接工艺制造近净形状部件的概念,自出现到现在已有近百年历史,电弧增材制造技术发展历程如图2所示。WAAM技术沉积速率高、设备成本低、材料利用率高,由此产生的环境友好型来制造大型金属结构件而逐渐受到工业制造部门的关注。特别是过去十年,该项技术的发展取得了持续性进展,引起了世界各地研究机构的广泛关注。
WAAM技术发展历程
1.1 WAAM技术分类
WAAM技术是以丝材为原料,通过电弧将丝材逐层熔化堆积形成致密金属零部件的过程。增材制造ASTM F3187-16标准将WAAM技术归类于DED技术的一种。早在1920年Baker就申请了一项关于利用可熔化电极并操纵螺旋路径成形金属结构的专利,随后Shockey等人提交的另一项专利描述了用于厚壁构件的焊接工艺,进行了多道结构的成形研究。后来,Ujiie采用逐层沉积金属方式制造圆形横截面的压力容器,并针对成形件内外层的加工工艺进行了探讨。1983年,Kussmaul等人通过埋弧焊串联焊接制造大型结构件,其沉积速率可达20kg/h。自此以后,随着计算机和热源技术的不断发展及增材制造技术的持续推进,WAAM技术得到了诸多学者更加深入的研究和开发。Dickens等人利用在线点对点编程的机器人熔化极气体保护焊工艺,通过逐层沉积方式制造了无支撑的碳钢薄壁结构。Ribeiro利用开发的离线监测系统允许对计算机辅助设计模型进行切片,实现了按规定格式逐层沉积预期结构。如图3所示,包括美国、英国、法国、荷兰、日本、韩国、印度、澳大利亚、中国等国家的多个科研单位围绕WAAM技术在设备可操作性、材料处理、路径规划等方面开展了大量的系列化研究,使得WAAM技术得到快速发展。
WAAM技术世界研究团队分布
根据WAAM工艺热源特性的不同,分为熔化极气体保护焊(Gas Metal Arc Welding,GMAW),钨极气体保护焊(Gas Tungsten Arc Welding,GTAW)和等离子气体保护焊(PlasmaArcWelding,PAW)三种。不同的WAAM技术有其自身独特的特点,表2对三种WAAM技术进行了对比总结。GMAW技术以丝材作为熔化极,成形过程不存在方向性问题,效率高,易于实现自动化控制和复杂零部件的制造,其效率是GTAW和PAW方法的2~3倍;但GMAW在成形过程中电弧会直接作用于焊丝而产生更多的烟尘和飞溅。PAW拥有最大的能量密度,可以实现高熔点难熔金属的大速度成形并减少变形。
WAAM制造系统一般由电弧热源、自动送丝系统、计算机控制的机器人/数控平台和其他附属机构四部分组成。利用WAAM系统实现构件制造和其他增材制造方式基本相同,包括三个步骤:路径规划、沉积和后处理。对于给定的CAD模型,通过三维切片和编程软件为沉积过程生成预定的机器人/机床运动和焊接参数,以实现构件高几何精度的无缺陷制造。基于包含具体材料信息的沉积模型,采用三维切片和编程软件,实现自动路径规划和工艺优化以避免潜在的工艺缺陷。运动机构为焊枪提供精确的运动,以逐层方式成形预期构件,如何通过各种传感器来测量焊接信号、沉积焊道几何形状、熔滴过渡和层间温度,实现成形过程的在线监测和性能调控,是当前和未来的研究热点。
1.2 冷金属过渡(CMT)技术
传统GMAW在短路过渡过程中焊丝一直往前进送,熔化成熔滴,熔滴与熔池接触瞬间发生短路,短路桥抱断,然后重新引弧,在短路的同时会伴有较大电流和飞溅。为了避免成形过程中大的热输入,奥地利Fronius公司在研究钢和铝异种材料连接的基础上,于1997年开发了无飞溅引弧技术,又经过数年的努力,发明了冷金属过渡技术(Coldmetaltransfer,CMT),开发了全新的GMAW焊接熔滴过渡形式,随后该公司进行CMT焊接系统的开发,最后成功将该技术应用于生产。